Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(4): 964-975, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519541

RESUMEN

Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.


Asunto(s)
Euryarchaeota , Salinidad , Filogenia , Archaea/genética , Euryarchaeota/genética , Metagenoma
2.
Microbiol Spectr ; 12(4): e0007224, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38456669

RESUMEN

Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.


Asunto(s)
Ecosistema , Humedales , Biodiversidad , Células Procariotas , Bacterias/genética , Hongos
3.
J Eukaryot Microbiol ; 71(2): e12995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37548159

RESUMEN

Rhodelphidia is a recently discovered phylum within the supergroup Archaeplastida, comprising only two known representatives (Rhodelphis marinus and Rhodelphis limneticus). Despite its close phylogenetic relatedness to red algae, Rhodelphidia differ markedly by being nonphotosynthetic eukaryotrophic flagellates with gene- and intron-rich genomes. Here, we describe a new freshwater Rhodelphidia species, Rhodelphis mylnikovi sp. n., strain Rhod-M. It shows clear morphological differences with the two other Rhodelphis species, including larger cell body size, presence of two contractile vacuoles, short and blunt pseudopodia, absence of cysts, and tendency to cannibalism. 18S rRNA-based phylogenetic analysis placed it sister to the freshwater species R. limneticus.


Asunto(s)
Agua Dulce , Genoma , Filogenia , ARN Ribosómico 18S/genética
4.
Sci Data ; 10(1): 603, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689692

RESUMEN

Mantamonads were long considered to represent an "orphan" lineage in the tree of eukaryotes, likely branching near the most frequently assumed position for the root of eukaryotes. Recent phylogenomic analyses have placed them as part of the "CRuMs" supergroup, along with collodictyonids and rigifilids. This supergroup appears to branch at the base of Amorphea, making it of special importance for understanding the deep evolutionary history of eukaryotes. However, the lack of representative species and complete genomic data associated with them has hampered the investigation of their biology and evolution. Here, we isolated and described two new species of mantamonads, Mantamonas vickermani sp. nov. and Mantamonas sphyraenae sp. nov., for each of which we generated transcriptomic sequence data, as well as a high-quality genome for the latter. The estimated size of the M. sphyraenae genome is 25 Mb; our de novo assembly appears to be highly contiguous and complete with 9,416 predicted protein-coding genes. This near-chromosome-scale genome assembly is the first described for the CRuMs supergroup.


Asunto(s)
Eucariontes , Genoma , Transcriptoma , Eucariontes/genética , Perfilación de la Expresión Génica , Genómica , Filogenia
5.
J Eukaryot Microbiol ; 70(6): e12997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37606230

RESUMEN

Ancyromonads are small biflagellated protists with a bean-shaped morphology. They are cosmopolitan in marine, freshwater, and soil environments, where they attach to surfaces while feeding on bacteria. These poorly known grazers stand out by their uncertain phylogenetic position in the tree of eukaryotes, forming a deep-branching "orphan" lineage that is considered key to a better understanding of the early evolution of eukaryotes. Despite their ecological and evolutionary interest, only limited knowledge exists about their true diversity. Here, we aimed to characterize ancyromonads better by integrating environmental surveys with behavioral observation and description of cell morphology, for which sample isolation and culturing are indispensable. We studied 18 ancyromonad strains, including 14 new isolates and seven new species. We described three new and genetically divergent genera: Caraotamonas, Nyramonas, and Olneymonas, together encompassing four species. The remaining three new species belong to the already-known genera Fabomonas and Ancyromonas. We also raised Striomonas, formerly a subgenus of Nutomonas, to full genus status, on morphological and phylogenetic grounds. We studied the morphology of diverse ancyromonads under light and electron microscopy and carried out molecular phylogenetic analyses, also including 18S rRNA gene sequences from several environmental surveys. Based on these analyses, we have updated the taxonomy of Ancyromonadida.


Asunto(s)
Eucariontes , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 18S/genética , Microscopía Electrónica
6.
ISME J ; 17(10): 1552-1563, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37169871

RESUMEN

It is generally assumed that viruses outnumber cells on Earth by at least tenfold. Virus-to-microbe ratios (VMR) are largely based on counts of fluorescently labelled virus-like particles. However, these exclude intracellular viruses and potentially include false positives (DNA-containing vesicles, gene-transfer agents, unspecifically stained inert particles). Here, we develop a metagenome-based VMR estimate (mVRM) that accounts for DNA viruses across all stages of their replication cycles (virion, intracellular lytic and lysogenic) by using normalised RPKM (reads per kilobase of gene sequence per million of mapped metagenome reads) counts of the major capsid protein (MCP) genes and cellular universal single-copy genes (USCGs) as proxies for virus and cell counts, respectively. After benchmarking this strategy using mock metagenomes with increasing VMR, we inferred mVMR across different biomes. To properly estimate mVMR in aquatic ecosystems, we generated metagenomes from co-occurring cellular and viral fractions (>50 kDa-200 µm size-range) in freshwater, seawater and solar saltern ponds (10 metagenomes, 2 control metaviromes). Viruses outnumbered cells in freshwater by ~13 fold and in plankton from marine and saline waters by ~2-4 fold. However, across an additional set of 121 diverse non-aquatic metagenomes including microbial mats, microbialites, soils, freshwater and marine sediments and metazoan-associated microbiomes, viruses, on average, outnumbered cells by barely two-fold. Although viruses likely are the most diverse biological entities on Earth, their global numbers might be closer to those of cells than previously estimated.


Asunto(s)
Ecosistema , Virus , Animales , Metagenoma , Virus/genética , Virus ADN/genética , Agua de Mar
7.
C R Biol ; 346: 55-73, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254790

RESUMEN

Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.


L'eucaryogenèse représente une transition évolutive majeure qui a conduit à l'émergence de cellules complexes à partir d'ancêtres plus simples. Pendant plusieurs décennies, le scénario le plus accepté impliquait l'évolution d'une lignée indépendante de proto-eucaryotes dotée d'un système endomembranaire, comprenant un compartiment nucléaire, un cytosquelette développé et la phagocytose, qui aurait permis d'incorporer l'ancêtre alphaprotéobactérien des mitochondries. Cependant, la découverte récente par des approches métagénomiques et culturales des archées Asgard, qui partagent de nombreux gènes avec les eucaryotes et sont leurs plus proches parents dans des arbres phylogénomiques, soutient plutôt les scénarios basés sur la symbiose d'une archée de type Asgard et d'une ou plusieurs bactéries à l'origine de la cellule eucaryote. Nous passons ici en revue les découvertes récentes qui ont conduit à ce changement conceptuel, en évoquant brièvement les modèles actuels d'eucaryogenèse, et les défis pour discriminer entre ces derniers et établir un scénario plausible détaillé qui rende compte de l'évolution des traits eucaryotes à partir de ceux de leurs ancêtres procaryotes.


Asunto(s)
Células Eucariotas , Simbiosis , Filogenia , Archaea/genética , Eucariontes/genética , Evolución Biológica
8.
Genome Biol Evol ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029959

RESUMEN

Ophirinina is a recently described suborder of jakobid protists (Excavata) with only one described species to date, Ophirina amphinema. Despite the acquisition and analysis of massive transcriptomic and mitogenomic sequence data from O. amphinema, its phylogenetic position among excavates remained inconclusive, branching as sister group either to all Jakobida or to all Discoba. From a morphological perspective, it has not only several typical jakobid features but also unusual traits for this group, including the morphology of mitochondrial cristae (sac-shaped to flattened-curved cristae) and the presence of two flagellar vanes. In this study, we have isolated, morphologically characterized, and sequenced genome and transcriptome data of two new Ophirinina species: Ophirina chinija sp. nov. and Agogonia voluta gen. et sp. nov. Ophirina chinija differs from O. amphinema in having rounded cell ends, subapically emerging flagella and a posterior cell protrusion. The much more distantly related A. voluta has several unique ultrastructural characteristics, including sac-shaped mitochondrial cristae and a complex "B" fiber. Phylogenomic analyses with a large conserved-marker dataset supported the monophyly of Ophirina and Agogonia within the Ophirinina and, more importantly, resolved the conflicting position of ophirinids as the sister clade to all other jakobids. The characterization of the mitochondrial genomes showed that Agogonia differs from all known gene-rich jakobid mitogenomes by the presence of two group II introns and their corresponding maturase protein genes. A phylogenetic analysis of the diversity of known maturases confirmed that the Agogonia proteins are highly divergent from each other and define distant families among the prokaryotic and eukaryotic maturases. This opens the intriguing possibility that, compared to other jakobids, Ophirinina may have retained additional mitochondrial elements that may help to understand the early diversification of eukaryotes and the evolution of mitochondria.


Asunto(s)
Genoma Mitocondrial , Humanos , Intrones , Filogenia , Eucariontes/genética , Células Eucariotas
9.
Proc Natl Acad Sci U S A ; 120(14): e2301522120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996101

RESUMEN

There are two fundamentally distinct but inextricably linked types of biological evolutionary units, reproducers and replicators. Reproducers are cells and organelles that reproduce via various forms of division and maintain the physical continuity of compartments and their content. Replicators are genetic elements (GE), including genomes of cellular organisms and various autonomous elements, that both cooperate with reproducers and rely on the latter for replication. All known cells and organisms comprise a union between replicators and reproducers. We explore a model in which cells emerged via symbiosis between primordial "metabolic" reproducers (protocells) which evolved, on short time scales, via a primitive form of selection and random drift, and mutualist replicators. Mathematical modeling identifies the conditions, under which GE-carrying protocells can outcompete GE-less ones, taking into account that, from the earliest stages of evolution, replicators split into mutualists and parasites. Analysis of the model shows that, for the GE-containing protocells to win the competition and to be fixed in evolution, it is essential that the birth-death process of the GE is coordinated with the rate of protocell division. At the early stages of evolution, random, high-variance cell division is advantageous compared with symmetrical division because the former provides for the emergence of protocells containing only mutualists, preventing takeover by parasites. These findings illuminate the likely order of key events on the evolutionary route from protocells to cells that involved the origin of genomes, symmetrical cell division, and antiparasite defense systems.


Asunto(s)
Fenómenos Bioquímicos , Genoma/genética , Origen de la Vida
10.
J Eukaryot Microbiol ; 70(2): e12956, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36453005

RESUMEN

Apusomonads are cosmopolitan bacterivorous biflagellate protists usually gliding on freshwater and marine sediment or wet soils. These nanoflagellates form a sister lineage to opisthokonts and may have retained ancestral features helpful to understanding the early evolution of this large supergroup. Although molecular environmental analyses indicate that apusomonads are genetically diverse, few species have been described. Here, we morphologically characterize 11 new apusomonad strains. Based on molecular phylogenetic analyses of the rRNA gene operon, we describe four new strains of the known species Multimonas media, Podomonas capensis, Apusomonas proboscidea, and Apusomonas australiensis, and rename Thecamonas oxoniensis as Mylnikovia oxoniensis n. gen., n. comb. Additionally, we describe four new genera and six new species: Catacumbia lutetiensis n. gen. n. sp., Cavaliersmithia chaoae n. gen. n. sp., Singekia montserratensis n. gen. n. sp., Singekia franciliensis n. gen. n. sp., Karpovia croatica n. gen. n. sp., and Chelonemonas dolani n. sp. Our comparative analysis suggests that apusomonad ancestor was a fusiform biflagellate with a dorsal pellicle, a plastic ventral surface, and a sleeve covering the anterior flagellum, that thrived in marine, possibly oxygen-poor, environments. It likely had a complex cell cycle with dormant and multiple fission stages, and sex. Our results extend known apusomonad diversity, allow updating their taxonomy, and provide elements to understand early eukaryotic evolution.


Asunto(s)
Eucariontes , Células Eucariotas , Filogenia
11.
Syst Biol ; 72(3): 505-515, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35900180

RESUMEN

The supergroup Holomycota, composed of Fungi and several related lineages of unicellular organisms (Nucleariida, Rozellida, Microsporidia, and Aphelida), represents one of the major branches in the phylogeny of eukaryotes. Nevertheless, except for the well-established position of Nucleariida as the first holomycotan branch to diverge, the relationships among the other lineages have so far remained unresolved largely owing to the lack of molecular data for some groups. This was notably the case aphelids, a poorly known group of endobiotic phagotrophic protists that feed on algae with cellulose walls. The first molecular phylogenies including aphelids supported their sister relationship with Rozellida and Microsporidia which, collectively, formed a new group called Opisthosporidia (the "Opisthosporidia hypothesis"). However, recent phylogenomic analyses including massive sequence data from two aphelid genera, Paraphelidium and Amoeboaphelidium, suggested that the aphelids are sister to fungi (the "Aphelida $+$ Fungi hypothesis"). Should this position be confirmed, aphelids would be key to understanding the early evolution of Holomycota and the origin of Fungi. Here, we carry out phylogenomic analyses with an expanded taxonomic sampling for aphelids after sequencing the transcriptomes of two species of the genus Aphelidium (Aphelidium insulamus and Aphelidium tribonematis) in order to test these competing hypotheses. Our new phylogenomic analyses including species from the three known aphelid genera strongly rejected the Opisthosporidia hypothesis. Furthermore, comparative genomic analyses further supported the Aphelida $+$ Fungi hypothesis via the identification of 19 orthologous genes exclusively shared by these two lineages. Seven of them originated from ancient horizontal gene transfer events predating the aphelid-fungal split and the remaining 12 likely evolved de novo, constituting additional molecular synapomorphies for this clade. Ancestral trait reconstruction based on our well-resolved phylogeny of Holomycota suggests that the progenitor of both fungi and rozellids, was aphelid-like, having an amoeboflagellate state and likely preying endobiotically on cellulose-containing, cell-walled organisms. Two lineages, which we propose to call Phytophagea and Opisthophagea, evolved from this ancestor. Phytophagea, grouping aphelids and classical fungi, mainly specialized in endobiotic predation of algal cells. Fungi emerged from this lineage after losing phagotrophy in favor of osmotrophy. Opisthophagea, grouping rozellids and Microsporidia, became parasites, mostly of chitin-containing hosts. This lineage entered a progressive reductive process that resulted in a unique lifestyle, especially in the highly derived Microsporidia. [Aphelida, fungi, Holomycota, horizontal gene transfer, phylogenomics, synapomorphy.].


Asunto(s)
Eucariontes , Microsporidios , Filogenia , Hongos/genética , Microsporidios/genética , Análisis de Secuencia de ADN/métodos
12.
Protist ; 173(4): 125896, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35841658

RESUMEN

Meteora sporadica is a protist species first described by Hausmann et al. (2002) in deep-sea sediments from the Sporades Basin, Eastern Mediterranean Sea. Due to its unusual morphology and locomotion, very different from those of other high-rank eukaryotic taxa, it was classified as an incertae sedis species. Unfortunately, its morphological characterization was not accompanied by the generation of molecular data, preventing its placement in molecular phylogenetic trees including other protist lineages. Here, we report the observation of protist cells in sediments from a shallow marine lagoon in the Mediterranean Sea with morphological characteristics indistinguishable from those of Meteora sporadica. Given this similarity and the geographical proximity to the type location, we consider that the organism that we observed likely corresponded to the type species, M. sporadica, which seems to be a benthic predator spanning from shallow to deep-sea habitats. We determined the 18S rRNA gene sequence of M. sporadica from micromanipulated cells. Searches in sequence databases did not yield closely related hits, suggesting that Meteora is a rare organism. Phylogenetic analyses did not show any close affinity with other eukaryotic groups, supporting its initial incertae sedis status and suggesting that it may define a new high-rank level eukaryotic lineage.


Asunto(s)
Eucariontes , Eucariontes/genética , Mar Mediterráneo , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
13.
Nat Ecol Evol ; 6(7): 1007-1023, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680998

RESUMEN

Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites.


Asunto(s)
Cromatina , Células Eucariotas , Archaea/genética , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN , Eucariontes/genética , Células Eucariotas/metabolismo , Histonas/genética , Histonas/metabolismo , Filogenia , Proteómica
14.
mBio ; 13(2): e0030722, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35384698

RESUMEN

Determining the precise limits of life in polyextreme environments is challenging. Studies along gradients of polyextreme conditions in the Dallol proto-volcano area (Danakil salt desert, Ethiopia) showed the occurrence of archaea-dominated communities (up to 99%) in several hypersaline systems but strongly suggested that life did not thrive in the hyperacidic (pH ∼0), hypersaline (∼35% [wt/vol],) and sometimes hot (up to 108°C) ponds of the Dallol dome. However, it was recently claimed that archaea flourish in these brines based on the detection of one Nanohaloarchaeotas 16S rRNA gene and fluorescent in situ hybridization (FISH) experiments with archaea-specific probes. Here, we characterized the diversity of microorganisms in aerosols over Dallol, and we show that, in addition to typical bacteria from soil/dust, they transport halophilic archaea likely originating from neighboring hypersaline ecosystems. We also show that cells and DNA from cultures and natural local halophilic communities are rapidly destroyed upon contact with Dallol brine. Furthermore, we confirm the widespread occurrence of mineral particles, including silica-based biomorphs, in Dallol brines. FISH experiments using appropriate controls show that DNA fluorescent probes and dyes unspecifically bind to mineral precipitates in Dallol brines; cellular morphologies were unambiguously observed only in nearby hypersaline ecosystems. Our results show that airborne cell dispersal and unspecific binding of fluorescent probes are confounding factors likely affecting previous inferences of archaea thriving in Dallol. They highlight the need for controls and the consideration of alternative abiotic explanations before safely drawing conclusions about the presence of life in polyextreme terrestrial or extraterrestrial systems. IMPORTANCE Determining the precise limits of life in polyextreme environments is challenging. Confounding factors such as exogenous contamination and the abiotic formation of structures resembling cells need to be considered before concluding on the unambiguous development of microbial life in low-biomass environments. Here, we explored how these factors can affect contrasting reports about microbial life thriving in the hypersaline and hyperacidic brines of the Dallol geothermal field (Danakil Depression, Ethiopia). We show not only that aerosols actively transport a wide diversity of prokaryotic and eukaryotic cells over Dallol but also that, upon contact with the chaotropic hyperacidic brine, cells and DNA are rapidly degraded. We also show the extant occurrence of mineral (mostly silica-based) biomorphs that unspecifically bind fluorescent probes and dyes. Our study highlights the need for controls and the consideration of alternative abiotic explanations before safely drawing conclusions on the presence of life in polyextreme terrestrial or extraterrestrial systems.


Asunto(s)
Ecosistema , Colorantes Fluorescentes , Archaea/genética , Hibridación Fluorescente in Situ , Minerales , ARN Ribosómico 16S/genética , Sales (Química) , Dióxido de Silicio
15.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35289373

RESUMEN

Proliferation of selfish genetic elements has led to significant genome size expansion in plastid and mitochondrial genomes of various eukaryotic lineages. Within the red algae, such expansion events are only known in the plastid genomes of the Proteorhodophytina, a highly diverse group of mesophilic microalgae. By contrast, they have never been described in the much understudied red algal mitochondrial genomes. Therefore, it remains unclear how widespread such organellar genome expansion events are in this eukaryotic phylum. Here, we describe new mitochondrial and plastid genomes from 25 red algal species, thereby substantially expanding the amount of organellar sequence data available, especially for Proteorhodophytina, and show that genome expansions are common in this group. We confirm that large plastid genomes are limited to the classes Rhodellophyceae and Porphyridiophyceae, which, in part, are caused by lineage-specific expansion events. Independently expanded mitochondrial genomes-up to three times larger than typical red algal mitogenomes-occur across Proteorhodophytina classes and a large shift toward high GC content occurred in the Stylonematophyceae. Although intron proliferation is the main cause of plastid and mitochondrial genome expansion in red algae, we do not observe recent intron transfer between different organelles. Phylogenomic analyses of mitochondrial and plastid genes from our expanded taxon sampling yielded well-resolved phylogenies of red algae with strong support for the monophyly of Proteorhodophytina. Our work shows that organellar genomes followed different evolutionary dynamics across red algal lineages.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Rhodophyta , Proliferación Celular , Evolución Molecular , Intrones , Filogenia , Plastidios/genética , Rhodophyta/genética
16.
Genome Biol Evol ; 14(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143662

RESUMEN

Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein family (calcyanin) possibly associated with cyanobacterial iACC biomineralization. Proteins of the calcyanin family are composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N-terminal domain whose structure allows differentiating four major types among the 35 known calcyanin homologs. Calcyanin lacks detectable full-length homologs with known function. The overexpression of ccyA in iACC-lacking cyanobacteria resulted in an increased intracellular Ca content. Moreover, ccyA presence was correlated and/or colocalized with genes involved in Ca or HCO3- transport and homeostasis, supporting the hypothesis of a functional role of calcyanin in iACC biomineralization. Whatever its function, ccyA appears as diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC, as confirmed by microscopy. This extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Moreover, ccyA was probably present in ancient cyanobacteria, with independent losses in various lineages that resulted in a broad but patchy distribution across modern cyanobacteria.


Asunto(s)
Biomineralización , Cianobacterias , Biomineralización/genética , Carbonato de Calcio/metabolismo , Carbonatos/metabolismo , Cianobacterias/metabolismo , Filogenia
17.
Nat Ecol Evol ; 6(3): 253-262, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027725

RESUMEN

Determining the phylogenetic origin of mitochondria is key to understanding the ancestral mitochondrial symbiosis and its role in eukaryogenesis. However, the precise evolutionary relationship between mitochondria and their closest bacterial relatives remains hotly debated. The reasons include pervasive phylogenetic artefacts as well as limited protein and taxon sampling. Here we developed a new model of protein evolution that accommodates both across-site and across-branch compositional heterogeneity. We applied this site-and-branch-heterogeneous model (MAM60 + GFmix) to a considerably expanded dataset that comprises 108 mitochondrial proteins of alphaproteobacterial origin, and novel metagenome-assembled genomes from microbial mats, microbialites and sediments. The MAM60 + GFmix model fits the data much better and agrees with analyses of compositionally homogenized datasets with conventional site-heterogenous models. The consilience of evidence thus suggests that mitochondria are sister to the Alphaproteobacteria to the exclusion of MarineProteo1 and Magnetococcia. We also show that the ancestral presence of the crista-developing mitochondrial contact site and cristae organizing system (a mitofilin-domain-containing Mic60 protein) in mitochondria and the Alphaproteobacteria only supports their close relationship.


Asunto(s)
Alphaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Metagenoma , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Filogenia
18.
Limnol Oceanogr ; 67(12): 2718-2733, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37064594

RESUMEN

Continental freshwater systems are particularly vulnerable to environmental variation. Climate change-induced desertification and the anthropogenic exploitation of hydric resources result in the progressive evaporation and salinization of inland water bodies in many areas of the globe. However, how this process impacts microbial communities and their activities in biogeochemical cycles is poorly known. Here, we take a space-for-time substitution approach and characterize the prokaryotic and eukaryotic microbial communities of two planktonic cell-size fractions (0.2-5 µm and 5-30 µm) from lakes of diverse trophic levels sampled along a salinity-alkalinity gradient located in the Trans-Mexican Volcanic Belt (TMVB). We applied a 16S/18S rRNA gene metabarcoding strategy to determine the microbial community composition of 54 samples from 12 different lakes, from the low-salinity lake Zirahuén to the hypersaline residual ponds of Rincón de Parangueo. Except for systems at both extremes of the salinity gradient, most lakes along the evaporation trend bear actively forming microbialites, which harbor microbial communities clearly distinct from those of plankton. Several lakes were sampled in winter and late spring and the crater lakes Alchichica and Atexcac were sampled across the water column. Physicochemical parameters related to salinity-alkalinity were the most influential drivers of microbial community structure whereas trophic status, depth, or season were less important. Our results suggest that climate change and anthropogenic-induced hydric deficit could significantly affect microbial communities, potentially altering ecosystem functioning.

19.
Environ Microbiol ; 23(11): 7168-7182, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34519149

RESUMEN

The Dallol protovolcanic area on the Danakil Depression (Afar region, Ethiopia) exhibits unique hydrothermal manifestations in hypersaline context, yielding varied polyextreme physicochemical conditions. Previous studies identified a wide archaeal diversity in less extreme brines but failed to identify microorganisms thriving in either high-chaotropicity, low-water-activity brines or hyperacidic-hypersaline Na-Fe-rich brines. Recently, we accessed several small lakes under intense degassing activity adjacent to the Round Mountain, west to the Dallol dome [Western Canyon Lakes (WCL); WCL1-5]. They exhibited intermediate parameter combinations (pH ~ 5, 34%-41% (weight/volume) NaCl-dominated salts with relatively high levels of chaotropic Mg-Ca salts) that should allow to better constrain life limits. These lakes were overwhelmingly dominated by Archaea, encompassing up to 99% of prokaryotic 16S rRNA gene amplicon sequences in metabarcoding studies. The majority belonged to Halobacteriota and Nanohaloarchaeota, the latter representing up to half of prokaryotic sequences. Optical and epifluorescence microscopy showed active cells in natural samples and diverse morphotypes in enrichment cultures. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed tiny cells (200-300 nm diameter) epibiotically associated with somewhat larger cells (0.6-1 µm) but also the presence of silica-dominated precipitates of similar size and shape, highlighting the difficulty of distinguishing microbes from mineral biomorphs in this kind of low-biomass systems.


Asunto(s)
Archaea , Lagos , Archaea/genética , ADN de Archaea/genética , Depresión , Etiopía , Filogenia , ARN Ribosómico 16S/genética , Salinidad
20.
Environ Microbiol Rep ; 13(5): 600-605, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34396701

RESUMEN

Microbialites are emblematic sedimentary rocks formed by phylogenetically and metabolically complex microbial communities thriving under specific physicochemical conditions. Most microbialites are photosynthesis-based ecosystems frequently formed by carbonates, thereby capturing inorganic carbon in the form of both, organic matter and mineral precipitates. However, little is known about the amount of sequestered carbon and the kinetics of the process, that is, microbialite growth rate. To assess microbialite growth rate and the influence of substrates on carbonate formation in Alchichica, an alkaline crater lake harbouring well-developed carbonate microbialites, we incubated in situ sterilized Nylon mesh, hydromagnesite and aragonite crystals, and bleached-coral aragonite for 2 years. We observed the rapid formation of nascent hydromagnesite and aragonite-containing microbialites on Nylon mesh, with an average growth rate of ~0.6 (and up to 1) mm year-1 . By contrast, only thin (< 0.2 mm) biofilms developed on exposed hydromagnesite and aragonite crystals and bleached-coral aragonite, suggesting decoupled microbial colonization and biomineralization and/or potential interference of those mineral surfaces with new carbonate nucleation. Microbial communities associated with 2-year-old microbialites and biofilms were fully comparable to mature communities populating Lake Alchichica indigenous microbialites.


Asunto(s)
Lagos , Microbiota , Carbonatos/análisis , Carbonatos/química , Sedimentos Geológicos/química , Lagos/química , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...